ON THE RECURSIVE SEQUENCE $x_{n+1} = \dfrac{\alpha + \beta x_{n-k}}{f(x_n,...,x_{n-k+1})}$
نویسندگان
چکیده
منابع مشابه
On the Recursive Sequence
For all values of the parameter γ, (1.1) has a unique positive equilibrium x̄ = (γ + 1)/2. When 0 < γ < 1, the positive equilibrium x̄ is locally asymptotically stable. In the case where γ = 1, the characteristic equation of the linearized equation about the positive equilibrium x̄ = 1 has three eigenvalues, one of which is −1, and the other two are 0 and 1/2. In addition, when γ = 1, (1.1) posses...
متن کاملOn the Recursive Sequence
The paper considers the boundedness character of positive solutions of the difference equation xn+1 = A+ x n /x n−1, n ∈ N0, where A, p, and r are positive real numbers. It is shown that (a) If p2 ≥ 4r > 4, or p ≥ 1 + r, r ≤ 1, then this equation has positive unbounded solutions; (b) if p2 < 4r, or 2 √ r ≤ p < 1+ r, r ∈ (0,1), then all positive solutions of the equation are bounded. Also, an an...
متن کاملon the global asymptotic stability for a rational recursive sequence
the main objective of this paper is to study the boundedness character, the periodicity character, the convergenceand the global stability of the positive solutions of the nonlinear rational difference equation/ , n 0,1,2,....0 01 kii n ikin i n i x x b xwhere the coefficients i i b , , together with the initial conditions ,.... , , 1 0 x x x k are arbitrary...
متن کاملOn the Rational Recursive Sequence
Our main objective is to study some qualitative behavior of the solutions of the difference equation xn+1 = γxn−k + (axn + bxn−k) / (cxn − dxn−k) , n = 0, 1, 2, ..., where the initial conditions x−k,..., x−1, x0 are arbitrary positive real numbers and the coefficients γ, a, b, c and d are positive constants, while k is a positive integer number.
متن کاملOn the recursive sequence xn+1=
We give a complete picture regarding the behavior of positive solutions of the following important difference equation: xn = 1+ ∑ k i=1αixn−pi / ∑m j=1βjxn−qj , n∈N0, where αi, i∈ {1, . . . ,k}, and βj , j ∈ {1, . . . ,m}, are positive numbers such that ∑ k i=1αi = ∑m j=1βj = 1, and pi, i ∈ {1, . . . ,k}, and qj , j ∈ {1, . . . ,m}, are natural numbers such that p1 < p2 < ··· < pk and q1 < q2 <...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2005
ISSN: 1027-5487
DOI: 10.11650/twjm/1500407884